Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Chuan-Ming Dong, ${ }^{\text {a }}$ Li-Gong Chen, ${ }^{\text {b }}$ Xue-Min Duan, ${ }^{\text {a }}$ Xue-Gui Shu, ${ }^{\text {a }}$ Tao Zeng ${ }^{\text {a }}$ and Xi-Long Yan ${ }^{\text {b }}$
${ }^{\text {a }}$ College of Pharmaceuticals and Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: tjdcm@sohu.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.029$
$w R$ factor $=0.087$
Data-to-parameter ratio $=18.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2,4-Dichloro-6-morpholino-1,3,5-triazine

This paper reports the synthesis of the title compound, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}$, and its crystal structure. The molecule possesses a mirror plane and the morpholine ring adopts a chair conformation.

Comment

2,4,6-Trichloro-1,3,5-triazine and its derivatives have been widely investigated, as a result of their importance as starting materials for many products, including active dyes, drugs and hindered amine light stabilizers (Borzatta \& Carrozza, 1991; Manasek \& Hrdlovik, 1990).

(I)

In the present paper, the title compound, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}$, (I), has been synthesized from 2,4,6-trichloro-1,3,5-triazine and morpholine in water. A crystallographic mirror plane at $y=\frac{1}{4}$ passes through atoms O1, N3, C2 and N1 (Fig. 1) The morpholine ring adopts a chair conformation. The bond lengths and angles (Table 1) are normal and compare well with those of a similar compound, viz. 4-(4,6-dimethoxy-1,3,5-triazin-2yl)morpholine (Fridman et al., 2003), although the $\mathrm{C}-\mathrm{N}$ bond connecting the two rings is somewhat longer [1.357 (4) A] in the latter compound. The crystal structure is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions (Table 2 and Fig. 2).

Experimental

$\mathrm{Na}_{2} \mathrm{CO}_{3} \quad(23.02 \mathrm{~g}, \quad 0.217 \mathrm{~mol})$ and $2,4,6$-trichloro-1,3,5-triazine $(40.00 \mathrm{~g}, 0.217 \mathrm{~mol})$ were added, with stirring, to water (200 ml) at 278 K . A solution of morpholine ($18.52 \mathrm{~g}, 0.213 \mathrm{~mol}$) in water (50 ml) was then added dropwise for 0.5 h . The reaction mixture was stirred at 273-278 K for a further 3 h . The precipitate was filtered off, washed with water and dried at 313 K . The title compound (39.03 g) in powder form was obtained in a yield of 76.5%. Suitable crystals were obtained by slow evaporation of a solution in a mixture of dichloromethane and cyclohexane (m.p. $425-428 \mathrm{~K}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, p.p.m.): $\delta 3.76(t, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.90(t, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, p.p.m.): $\delta 44.65$ (4C), 66.56 (4C), 164.24 (2C), 170.59 (1C).

Received 7 March 2005 Accepted 21 March 2005 Online 31 March 2005

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}$
$M_{r}=235.07$
Orthorhombic, Pnma
$a=9.6003$ (11) \AA
$b=13.0545$ (15) \AA
$c=7.6874$ (9) A
$V=963.44(19) \AA^{3}$
$Z=4$
$D_{x}=1.621 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.833, T_{\text {max }}=0.879$
6195 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.087$
$S=1.08$
1278 reflections
71 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 2735
reflections
$\theta=2.6-28.1^{\circ}$
$\mu=0.65 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.26 \times 0.24 \times 0.20 \mathrm{~mm}$

1278 independent reflections
1056 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=28.6^{\circ}$
$h=-11 \rightarrow 12$
$k=-17 \rightarrow 14$
$l=-10 \rightarrow 9$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0509 P)^{2}\right. \\
& \quad+0.0972 P] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } S H E L X L 97 \\
& \text { Extinction coefficient: } 0.032
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cl} 1-\mathrm{C} 1$	$1.7318(12)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.3573(12)$
$\mathrm{O} 1-\mathrm{C} 4$	$1.4168(15)$	$\mathrm{N} 3-\mathrm{C} 2$	$1.331(2)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.3254(14)$	$\mathrm{N} 3-\mathrm{C} 3$	$1.4604(14)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.3028(15)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.5083(19)$
$\mathrm{C} 4^{\mathrm{i}}-\mathrm{O} 1-\mathrm{C} 4$	$110.91(14)$	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 11$	$115.79(9)$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 3$	$123.35(7)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 11$	$114.62(9)$
$\mathrm{C} 3-\mathrm{N} 3-\mathrm{C}^{\mathrm{i}}$	$113.22(14)$	$\mathrm{N} 3-\mathrm{C} 2-\mathrm{N} 2$	$118.09(7)$

Symmetry code: (i) $x,-y+\frac{1}{2}, z$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 B \cdots \mathrm{Cl1} 1^{\mathrm{ii}}$	0.97	2.91	$3.736(2)$	144

Symmetry code: (ii) $-x+\frac{1}{2},-y, z+\frac{1}{2}$.
All H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The suffix A indicates the symmetry position ($x, \frac{1}{2}-y, z$).

Figure 2

The crystal structure of (I), viewed along the c axis. Dashed lines indicate hydrogen-bond interactions.
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Borzatta, V. \& Carrozza, P. (1991). European Patent EP 0462069. Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Fridman, N., Kapon, M. \& Kaftory, M. (2003). Acta Cryst. C59, o687-o689.
Manasek, Z. \& Hrdlovik, P. (1990). European Patent EP 0377324.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

